T-SUM Lexicon

July 2023

Alexandria Chong Shyantani Saha Clemence Cavoli Daniel Oviedo Yasmina Yusuf

Content

Accelerating sustainability transitions

1

Active travel

7

Car dependency/Car-dependent urban development

ς

Co-production of knowledge and evidence

10

Integrated multi-modal transport

12

Mobility practices

14

Placemaking

15

Practical implementation challenges

16

Policy instruments

18

Semi-formal transport

19

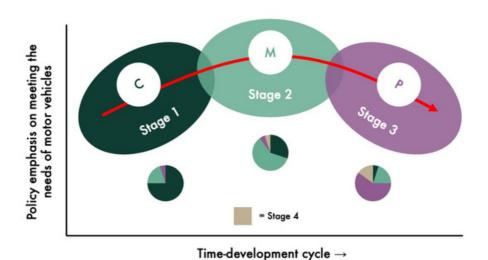
Sustainable accessibility

21

Sustainable urban mobility

26

Urban development trajectory


Accelerating sustainability transitions

Car-dependent urban development results in strong negative externalities such as air pollution, congestion, road collisions, urban sprawl, social exclusion, and spatial segregation and leads to poor accessibility and inequalities that affect socio-economic development. Research undertaken in Europe identified three distinct policy perspectives or dominant policy mindsets that influence private car use levels and how they have evolved over time (see Figure 1). There is also evidence internationally of the positive association between an increase in GDP per capita, urban population growth, and car use in cities (Teoh et al., 2020). T-SUM seeks to challenge the traditionally assumed links between economic growth and car-dependent urban development, identifying the base conditions under which the transition to sustainable urban mobility can be accelerated in sub-Saharan African cities with low-but-rising levels of motorisation (Figures 2 and 3; see Cavoli, 2021; Oviedo et al., 2022 for further elaboration).

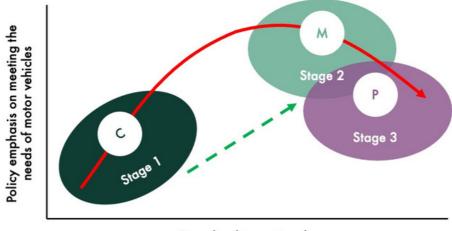

Here, the use of the word *accelerating* refers to not just making something happen more quickly than historical data suggest but also 'short-circuiting' or 'leapfrogging' a city's development trajectory by bypassing the car-oriented policy phase.

Figure 1 Typical policy perspectives that influence levels of private car use (Source: Jones et al., 2018)

Figure 2 Post second world war urban development in most Western European cities has broadly followed a sequential three-stage process with traffic restraint and street place-making elements in Stage 3 (P) depending on the provision of modal alternatives in Stage 2 (M); in practice, however, the shift from one stage to another is much less clear cut, there may be elements of all three stages throughout a city's development (with the dominant perspective changing), and overlaps and short-term reversals of policy may sometimes occur following an election (Source: Jones et al., 2018)

 $\textbf{Time-development cycle} \rightarrow$

Figure 3 Accelerating the shifts in a city's policy perspective and mobility pattern and consequently its development trajectory towards one that is more sustainable and socially just (Source: Jones et al., 2018)

In the trans-disciplinary field of sustainability transitions research (STR), the term sustainability transitions refer to "transformations towards more sustainable modes of production and consumption" (Markard et al., 2012, p. 955). According to Grin et al. (2010), sustainability transitions differ from socio-technical transitions (a more established term in the literature), with the former not only driven by technological innovation and economics but also strongly influenced by political, scientific, and civil society actors(see Köhler et al., 2019 for elaboration). The incremental changes in the socio-spatial dynamics of sustainability transitions are based on the normative expectations these actors have in the process of shifting societies/cities towards a low-carbon economy (i.e., whether issues of societal inequality, stakeholder participation, fair distribution of cost and benefits, and non-discriminatory policymaking approaches should be addressed, and if yes, what are the consequences for social justice). Truffer and Coenen (2012: 12) assert that "sustainability transitions are by their very nature political projects".

The most dominant heuristic framework in STR is known as the Multi-Level Perspective (MLP), coined by Geels (2002, 2010: 495), which "provides [sic] an overall view of the multi-dimensional complexity of changes in socio-technical systems". In the MLP, sustainability transitions are non-linear processes occurring as a result of interactions between the three analytical levels:

- A **niche** level where innovations occur and build up momentum.
- A socio-technical **regime** level where existing or incumbent technologies intertwine within a configuration of actors, institutions, practices, and regulations become stabilised over time.
- A landscape level (or the broader environment, conditions, and pressures) where diverse factors such as macroeconomic trends, war, global environmental problems, migration, as well as political and socio-cultural discourses occur.

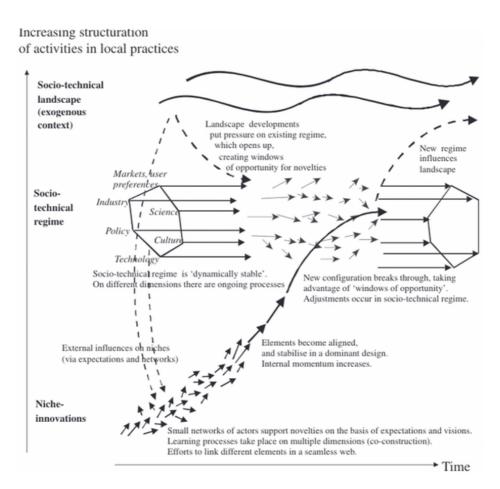


Figure 4 MLP on sustainability transitions (Adapted from Geels, 2002)

A common criticism of the MLP is its lack of attention to questions of space and scale (Coenen et al., 2012). Consequently, this poses an analytical challenge for researchers who seek to adopt the MLP to study sustainability transitions in the urban mobility sector (e.g., Auvinen & Tuominen, 2014; Kemp et al., 2012; Nykvist & Whitmarsh, 2008; Ruhrort, 2020; Whitmarsh, 2012; Zijlstra & Avelino, 2012; see also Geels, 2012). Canitez (2019: 320) addresses this criticism by identifying "[f]ragmented institutions, ambivalent transport and land use policies, lack of public awareness regarding sustainability, incompetent authorities, vested interests and clientelist political relations" as critical characteristics researchers adopting the MLP to study mobility systems in global South cities would need to take into account.

The Share the Road Programme, launched by UNEP and the FIA Foundation in 2008, is a notable example of a programme that seeks to shape sustainability transitions towards low-carbon mobility in the global South by supporting governments and other stakeholders to "move away from prioritising the car-driving minority, towards investing in infrastructure for the majority: those who walk and cycle" (UNEP, 2022). Besides strategic investments in walking and cycling infrastructure, the Programme also emphasises the design of an integrated, multi-modal transport system so that global South cities may avoid the negative socio-environmental externalities associated with car-dependent urban development. There, however, remains a persistent challenge for planners and policymakers due to the deeply entrenched socio-cultural association of motorised transport with affluence and elevated status in the global South (UNEP, 2016).

Sustainability Transitions' and 'Sustainable urban mobility transitions' refer to the acceleration of structural and functional transformations and the reconfiguration of urban systems towards sustainability and zero carbon emissions. These transformations must lead to system changes, at times disruptive, with a particular focus on mobility, accessibility, and land-use issues at the urban level. They should lead to mobility, accessibility, and land-use systems that are efficient, ecologically sustainable and socially equitable. The project draws from both the theory and practice of sustainability transitions to engage with public and professional stakeholders across levels of governance and urban sectors to develop city visions based on sustainability, prosperity, social equity, health, and well-being.

Active travel

Active travel, also called active transport, non-motorised transport, and human-powered transport, refers to active modes of transport such as walking and cycling as well as scooter, handcart, and wheelchair use. In the past two decades, many high-income cities have promoted active transport as an alternative to motorised travel through policy and technological innovations. Winters et al. (2017) suggest that active transport policies (i.e., to create an urban environment that is safe, convenient, and comfortable for walking and cycling) broadly fall into the following four categories: society-level, city-level, route-level, and individual-oriented.

On the other hand, active transport has long played a central role in the everyday mobility practices in sub-Saharan African (SSA) cities (Foley et al., 2022). The vast majority of transport users in SSA cities are from lowincome households and are therefore dependent on active transport modes, particularly walking (or cycling in SSA cities, see Acheampong, 2017; Castañeda, 2021; Jennings, 2021; Morgan, 2019, 2020). Active transport is, therefore, very much a necessity as there are no other viable options for transport users to meet their daily travel needs (Oviedo et al., 2021). Improving the everyday accessibility and mobility of low-income transport users in SSA cities is crucial to address urban poverty and inequality. However, investments in the region tend to focus on road infrastructure as it is seen as an enabler of economic growth and poverty reduction, focusing on car usage and limited (at best) considerations for collective transport and active transport (Beuran et al., 2015). Mitullah and Opiyo (2012) observe that the lack of suitable institutional framework as well as insufficient policy and investment into pedestrian infrastructure has made these spaces a hostile environment for pedestrians to navigate despite the dominance of the mode (see also Massingue & Oviedo, 2021; Okyere et al., 2021). Further, there is little to no integration of pedestrian infrastructure into cities' overall planning and infrastructure development (Diaz Olvera et al., 2013).

Beyond the economic and technical dimension, active transport also has a public health dimension (see Bloyce & White, 2018 for elaboration). The little to no integration of pedestrian and cycling infrastructure into cities' overall planning development means that pedestrians and cyclists bear a more significant cost associated with the construction and/or upgrading of transport infrastructure, including higher road accident rates, longer travel time, greater exposure to pollution, as well as the elimination of pedestrian traffic from certain parts of the city (Vanderschuren & Zuidgeest, 2017). According to the World Health Organization (2018), road traffic deaths in Africa are at 26.6 deaths per 100,000 people, nearly three times that in Europe. Adeloye et al. (2016), however, estimate the actual figure to be significantly higher than official records at 65 deaths per 100,000 people.

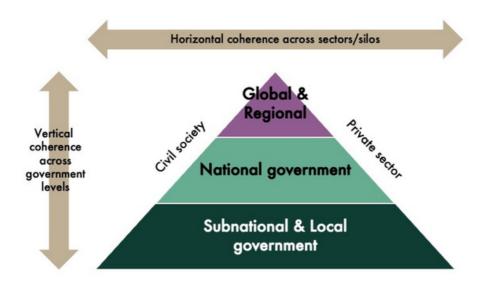
By examining the interaction between various groups of road users, Venter (2017) finds that drivers might not be attentive to pedestrians and cyclists due to how frequently they encounter active transport users as part of their day-to-day driving experience, which 'dilutes' the perception of them being at greater risk. This supports Khayesi et al. (2010: 106), who suggest that instead of viewing pedestrians, cyclists, and street vendors as vulnerable transport users at risk, a more appropriate framing would be to view them as the "neglected and victimised road user group", and consequently, their needs ought to be examined to promote equity in land use and transport planning (see Vasconcellos, 2001 for elaboration). Additionally, Loo and Siiba (2019) observe that the rate of active transport among school children in Africa is showing signs of transitioning towards what has been previously observed in other regions of the world — a decline in walking trips to school coupled with an increase in car travel — demonstrating the uneven development of active transport in cities across the world despite the well-documented health benefits (see Rabl & de Nazelle, 2012; Saunders et al., 2013).

Car dependency/ Car-dependent urban development

Authors such as Newman and Kenworthy (1989) introduced the notion of car dependency, which has subsequently been interpreted in various ways. Merom et al. (2018) define 'car dependency' as permanently relying on private motorised vehicles as the only transport mode. Litman and Laube (2002) argue that car dependency is associated with high rates of car travel per capita, car-oriented land-use patterns, and the lack of alternative transport options. Handy et al. (2005) assert that, from a research and policymaking perspective, people who drive a car out of choice should be treated differently from those who drive it because they have no other viable option. Other authors have moved beyond the notion of car dependency as an objective variable (i.e., car travel per capita and the number of cars in the household) to explore the subjective variables shaping practices and norms. For example, Behren et al. (2018) observe that factors such as a lack of knowledge on public transport or emotional needs and car use should be considered.

At the city or metropolitan scale, car-dependent urban development refers to car use becoming "a key satisfier of human needs, largely displacing less carbon-intensive alternatives" (Mattioli et al., 2020: 2). This 'carbon lock-in' creates political, institutional, and technological inertia to mitigate emissions as well as the transition to sustainable urban mobility (ibid.).

Co-production of knowledge and evidence


Co-production is "a process through which inputs from individuals who are not 'in' the same organisation are transformed into goods and services" (Ostrom, 1990, p. 1073). Furthermore, as it articulates certain values (i.e., justice, equity, fairness, accountability), co-production is both a normative and moral concept (Albrechts, 2015) grounded in a deeper understanding of the complex dynamics of formal and informal urban relations that emerge from learning, negotiation, and experimentation (Buyana et al., 2021).

The term is currently used in various contexts beyond its initial conceptualisation around the co-production of urban services(see Galuszka, 2019). Within urban governance, policymaking, and research, co-production is often discussed as a form of engagement between stakeholders and a distinctive approach to knowledge-building (Durose et al., 2012; Moser, 2016). It focuses on influencing the status quo by challenging "unitary visions and instead embraces knowledge production borne of the confrontation and juxtaposition of multiple ways of living, working, and seeing the city" (Osuteye et al., 2019: 5). In other words, by spurring community engagement in urban development-related policies, co-production ties research with community needs and preferences in the spirit of more sustainable urban transitions (Perry & Atherton, 2017), - which is especially relevant for cities in the global South where institutional norms are often counterproductive and/or exclusionary when it comes to the welfare of the urban poor (Galuszka, 2019), and formal channels of engagement do not exist or are not satisfactory (Watson, 2014).

Proponents of co-production assert that it goes beyond standard 'citizens' participation' (which has been criticised for tokenism) as it seeks to provide a more equal and reciprocal relationship between the state and citizens (Albrechts, 2015). Co-production rests on bringing together different social worlds (i.e., academia and grassroots groups) to develop a shared "thought style" that recognises the value of citizens' contextual knowledge or lived experiences that can be used to assess the credibility of experts' claims (Fenge et al., 2012), and transdisciplinary knowledge-building (Pohl et al., 2010, p. 271). That said, there is no clear boundary between co-production and citizens' participation (Simon et al., 2020), as both are creative processes that seek to develop socio-spatial imaginations such that it "includes not only the views of the most articulate or powerful, but also the views of those who have been systematically excluded by structural inequalities of class, gender and religion" (Sandercock, 1998, p. 65).

Cross-sectoral and multi-level governance

In the context of sustainable transport planning and management, cross-sectoral and multi-level governance are two key concepts to overcome institutional silos, which refer to "the sectoral division of management, whether by tasks or thematic division and where there are differences in institutional logics, workings and culture, inhibiting cross-sectoral work" (Oseland, 2019: 1).

Figure 5 Policy and institutional coherence for the SDGs – horizontal and vertical integration across institutional silos (Meuleman, 2021)

Cross-sectoral governance refers to the coordination and collaboration among different stakeholders in different sectors involved in the provision of sustainable transport, including national transport regulators, land-use and transport planners, private operators, civil society organisations, and residents. The recognition that sustainable transport intersects with other urban sectors such as land-use, energy, housing, healthcare, environment, and heritage, is central to the notion of cross-sectoral governance. On the other hand, multi-level governance refers to the decision-making and implementation processes, as well as the distribution of accountability across the different levels of government (i.e., international, national, regional, and local) and other stakeholders to tackle issues related to sustainable transport (Marsden & Rye, 2010).

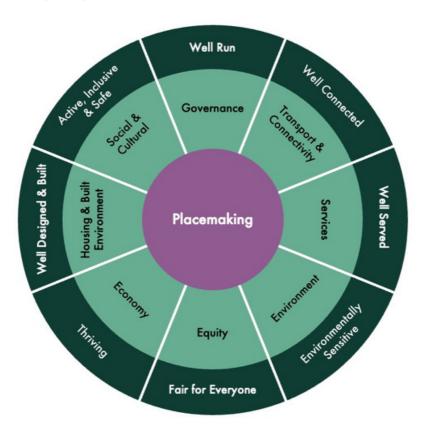
When put into practice, cross-sectoral and multi-level governance aims to foster a more holistic and collaborative approach to transport planning, administration, and management. The urgency to overcome institutional silos is significantly greater in the context of the climate crisis and extreme weather events (Leiren & Jacobsen, 2018). Processes of cross-sectoral and multi-level governance may occur from the top-down and from the bottom-up to also overcome path dependency to sustainable transport governance (Dowling, 2018) and avoid possibly damaging technology lock-ins" (Pangbourne et al., 2018).

Integrated multi-modal transport

Integrated multi-modal transport refers to the possibility for users to combine several modes of transport for a seamless trip. Common modes of transportation include walking, cycling, public transport (bus and rail), taxis, private vehicles, and micromobility (Cottrill et al., 2020). Theoretically, multi-modal transport systems provide a range of efficient, convenient, and affordable transfers through the strategic development of supportive policies and infrastructure and the careful coordination between different transport regulators and providers. Multi-modal transport systems have the significant potential to reduce congestion, environmental pollution and contribute to greater urban liveability (Oeschger et al., 2020). However, Kilani et al. (2022) noted that existing multi-modal transport systems often remain limited to some predetermined trip configurations/possibilities and may not be sufficiently flexible to meet the diverse needs of vulnerable and underserved transport users.

Mobility practices

Practices are routinised and "defined by interdependent relations between material, competencies and meanings" (Shove et al., 2012, p. 24). According to Cresswell and Merriman (2011: 5), "mobility is practiced, and practice is often conflated with mobility. To move is to do something." In this sense, mobility practices are "embedded, embodied and emplaced" with a complex array of political, cultural, and economic contexts within the city (Jirón, 2009, p. 46).


Placemaking

Placemaking describes "[t]he ongoing collaborative process in which diverse groups of stakeholders within a community work together to define, develop, and deliver on a common vision for spatial transformation" (Horgan, 2020, p. 145). It is a collaborative 'art' and 'science' (Fincher et al., 2016) that occurs outside disciplinary boundaries of architecture, planning, landscape architecture, economics, ecology, and sociology, engendering a new constellation of relationships based on "tacit, place-based, local, and situated and shared experience" (Horgan, 2020, p. 147).

Placemaking relies on building capacities that allow for different types of local knowledge (e.g., expert, lay, subaltern, and indigenous) to recalibrate political and economic power relations. However, local knowledge in itself is a moving target as people attach specific meaning(s) to place, which is broadly understood as a space people are attached to through "reiterative social practices" (Cresswell, 2004, p. 39). Moreover, as a result, evaluating the impact(s) of placemaking activities is difficult as it remains contested and elusive in practice.

In the context of sub-Saharan African cities, mainstream planning's market-driven and techno-managerial objectives are largely disconnected from the issues of poverty, inequality, and informality, leading to enduring tension with the livelihood strategies of its most populations (Faldi et al., 2021). Some regard the collaborative nature of placemaking practices as a tool for planners and the planning system to acknowledge people's 'right to the city' and establish a working relationship for engagement (see Friedmann, 2010 for elaboration). Furthermore, in the context of sustainable urban mobility, placemaking is a tool for transport planning practice (which is rooted in the notion of 'segregation' rather than 'integration') to consider the notion of place, something that has been divorced from its practice for decades (Curtis, 2016). Specifically, it

is about raising questions on the kind of place that is being served or planned (i.e., origins and destinations) and by what kind of activity (i.e., land use) from the perspective of different transport users at different spatial scales (ibid.)

Figure 6 The Egan Wheel is a tool designed to facilitate placemaking conversations, which offers a holistic set of factors that impact place (Horgan, 2020: 146)

Andres et al. (2021: 29) suggest that placemaking practices, particularly "impermanent, adaptable, temporary and alternative forms", must be better integrated into the planning processes and planning system as a development tool.

Practical implementation challenges

In the context of the T-SUM project, practical implementation challenges refer to enabling factors and barriers to change, which either enable or hinder governments from transitioning towards the desired sustainable urban mobility vision. These technical, financial, and/or political challenges can hinder the adoption of new technologies and progressive transport policies.

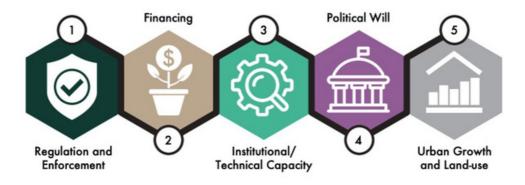


Figure 7 Main practical implementation challenges (Source: T-SUM)

Policy instruments

The term 'policy instruments' is often used synonymously with 'policy measures'. It refers to policy and planning tools to achieve specific policy objectives. Transport policy instruments may take the form of taxes, subsidies, grants, investments in transport infrastructure and services or urban plans. The design of policy instruments for strategic/systemic transitioning to sustainable mobility is shaped by the socio-political and economic context in which it is being implemented. In other words, the parameters of what is considered economically feasible, financially viable, and politically acceptable are highly time and place specific.

The table below provides examples of some of the policy instruments recommended by T-SUM within the avoid-shift-improve (ASI) framework.

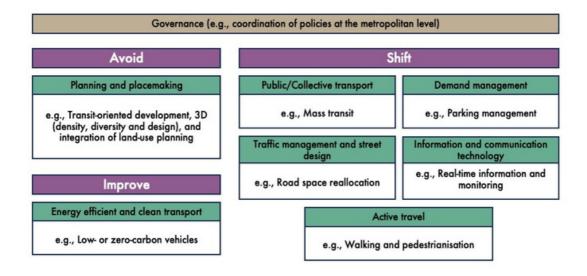


Figure 8 Avoid-Shift-Improve framework (Source: T-SUM)

Semi-formal transport

Semi-formal transport, also called 'paratransit' or 'artisanal transport', is ubiquitous in Sub-Saharan African cities. According to Tun et al. (2020), semi-formal transportation services are demand-responsive, unscheduled, and flexible public transportation services offered by self-organised operators without effective regulatory frameworks. They fill a market need in urban areas where public transport services are insufficient and/or unreliable by providing high-frequency, high-coverage, and adaptable services with set routes and designated stops. The vehicle size and capacity can vary from cars to full-size buses (Zhang et al., 2013). However, semi-formal transport also creates negative externalities such as environmental pollution, congestion, poor road safety, as well as issues surrounding poor data and understanding of operations, labour exploitation, and regulation (Klopp, 2021). Unlike informal transport, semi-formal transport operators usually have a license to operate (e.g., minibuses in Freetown or Maputo).

Sustainable accessibility

Accessibility refers to "the potential for interaction, both social and economic, the possibility of getting from home to a multitude of destinations offering a spectrum of opportunities for work and play" (Handy & Niemeier, 1997, p. 1175). The scales at which accessibility is approached have also evolved across the literature, from a focus on the "how" to a consideration of the "who" or "what" (Handy, 2020), which can, in turn, be loosely grouped into three levels as illustrated in Figure 9. On the other hand, access refers to the realisation of such potential, which can be achieved by travelling from home to a destination; having

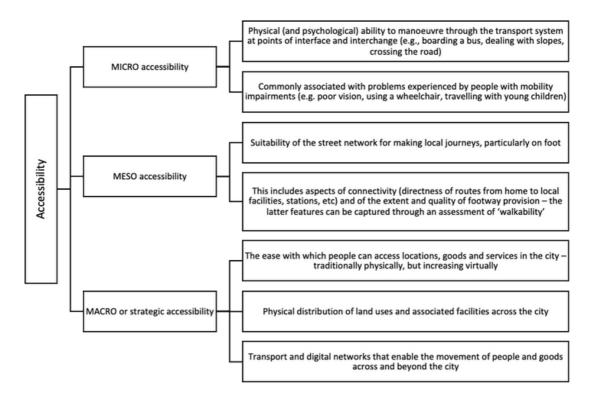
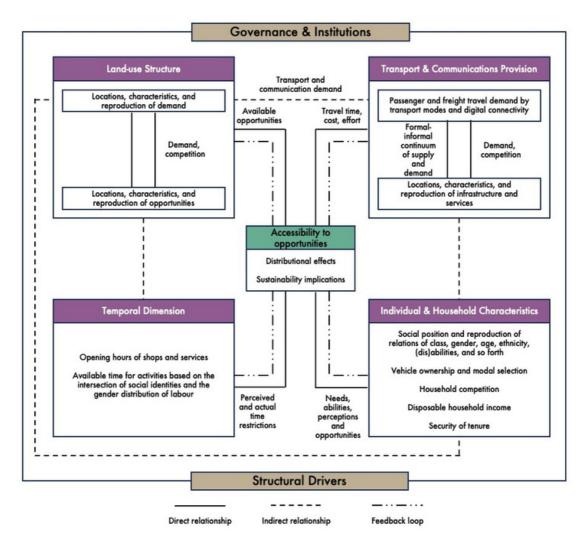
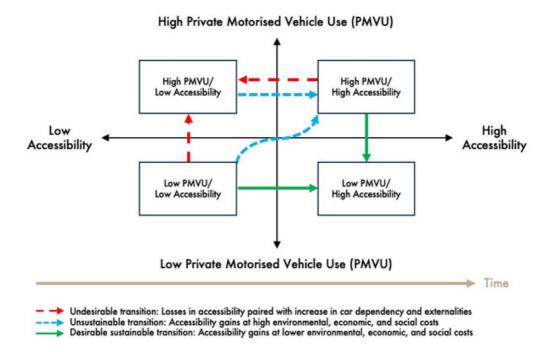



Figure 9 Scales of accessibility (Oviedo et al., 2022)

the good or service delivered to, provided at the home or in proximity; accomplishing the activity via the Internet (e.g., watching a film), using pipes (e.g., water), wires (e.g., electricity) or air waves (e.g., radio) to link people and products.


Geurs and van Wee (2004) identified four key components of accessibility:

- Land-use (the quantity, quality, and distribution in space of opportunities such as jobs, shops, healthcare, social and recreational facilities at destination locations as well as the demand for opportunities at origin locations)
- **Transport** (features of the transport system expressed in terms of the (dis)utility for an individual to travel between origins and destinations using a given mode of transport)
- **Time** (time constraints related to both availability of opportunities during the day and the availability of time for individuals to make use of such opportunities)
- **Individual** (the needs, abilities, and opportunities of individuals that can influence levels of access to transport and their ability to participate in opportunities)

Figure 10 Components and relations of accessibility (Adapted from Geurs & van Wee, 2004)

By examining the relations of accessibility (i.e., the potential for interaction), Geurs and van Wee's framework provides a bird's eye view of how the land-use structure, as well as transport and communication systems interact and generate a differentiated set of opportunities that individuals can reach by mode, location, social groups, and activity (see Jaramillo et al., 2012; Niehaus et al., 2016; Vasconcellos, 2001). However, a consolidated framework has yet to be proposed to account for the complexities of accessibility in sub-Saharan African cities. Future research has to explicitly account the room for manoeuvre in which informality, technology, and power may influence the components and relations of accessibility (Benevenuto & Caulfield, 2019; Venter et al., 2019), and consequently, the role of accessibility in the development of specific trajectories for sustainable urban mobility. The quadrants proposed in Figure 11 illustrate a simplified set of alternative trajectories at the city (i.e., macro) and the neighbourhood (i.e., meso) level can materialise over time from an accessibility perspective, using dependency from private motorisation as a proxy for how sustainable each potential stage is. Figure 12 unpacks these alternative trajectories further by introducing accessibility practices at the individual and community level (i.e., micro) while adding a more explicit definition of timeframes for considering the short-term, mid-term and long-term sustainable urban mobility transitions in practice.

Figure 11 Quadrant of transition to sustainable accessibility practices (Source: T-SUM)

Figure 12 Links between accessibility practices, experiences and attitudes at different spatial and temporal scales (Source: T-SUM)

Sustainable urban mobility

Sustainable urban mobility refers to the ability of a city's or urban region's transport system to meet its residents' physical and virtual mobility needs. Simultaneously, the provision of transport infrastructure and services to facilitate the efficient movement of people and goods in the context of climate, energy and extreme weather events should be within the carrying capacity of supporting ecosystems and to enhance residents' general health and well-being (Tsavachidis & Petit, 2022).

Sustainable urban mobility policies often promote active travel (i.e., walking, cycling) and public transportation as viable alternatives to private car usage. It also emphasises the significance of a just transition to decarbonised urban mobility solutions so as not to compromise the ability of future generations to experience a safe, accessible, fast, affordable, comfortable, and clean transport system.

Urban development trajectory

At any given time, existing land-use and transport patterns in a city shape the possibilities for the direction of change in the future. Urban development trajectory refers to the spatio-temporal organisation of socio-environmental risks and/or vulnerabilities interlinked with poverty, inequality, migration patterns, and technological and institutional capacities, locking cities into a hard-to-reverse trajectory of urban development. A critical role of planning is to understand these trajectories, "drawing out the degree of fixity and fluidity in urban practices [i.e., the interactions between individual and collective agency] and structural drivers [i.e., the political economy] that underpin them" as well as socio-environmental flows that offer points of entry for policy actions and/or socio-technical changes that can result in a more sustainable and just urban mobility system (Levy et al., 2017, p. 11).

Trajectories are embedded within broader contexts or pathways that articulate future mobility visions in the city (Hodson et al., 2016). According to Castán Broto (2017: 757), "[p]athways emphasise future possibilities and alternative courses of action" whereas "[t]rajectories emphasise the course or direction of change". Hence, pathways are linked to multiple and competing values that shape urban trajectories (Leach et al., 2010).

References

Acheampong, R. A. (2017). Towards sustainable urban transportation in Ghana: Exploring adults' intention to adopt cycling to work using theory of planned behaviour and structural equation modelling. *Transportation in Developing Economies*, 3(2), 3–18. https://doi.org/10.1007/s40890-017-0047-8

Adeloye, D., Thompson, J. Y., Akanbi, M. A., Azuh, D., Samuel, V., Omoregbe, N., & Ayo, C. K. (2016). The burden of road traffic crashes, injuries and deaths in Africa: A systematic review and meta-analysis. *Bulletin of the World Health Organization*, 94(7), 510A-521A. https://doi.org/10.2471/BLT.15.163121

Albrechts, L. (2015). Ingredients for a more radical strategic spatial planning. *Environment and Planning B: Planning and Design*, 42(3), 510–525. https://doi.org/10.1068/b130104p

Andres, L., Bakare, H., Bryson, J. R., Khaemba, W., Melgaço, L., & Mwaniki, G. R. (2021). Planning, temporary urbanism and citizen-led alternative-substitute place-making in the Global South. *Regional Studies*, 55(1), 29–39. https://doi.org/10.1080/00343404.2019.1665645

Auvinen, H., & Tuominen, A. (2014). Future transport systems: Long-term visions and sociotechnical transitions. *European Transport Research Review*, 6(3), 343–354. https://doi.org/10.1007/s12544-014-0135-3

Behren, S. Von, Minster, C., Esch, J., Hunecke, M., Vortisch, P., & Chlond, B. (2018). Assessing car dependence: Development of a comprehensive survey approach based on the concept of a travel skeleton. *Transportation Research Procedia*, 32, 607–616. https://doi.org/10.1016/j.trpro.2018.10.015

Benevenuto, R., & Caulfield, B. (2019). Poverty and transport in the global south: An overview. Transport Policy, 79, 115–124. https://doi.org/10.1016/j.tranpol.2019.04.018 Beuran, M., Gachassin, M., & el Raballand, G. €. (2015). Are there myths on road impact and transport in Sub-Saharan Africa? *Development Policy Review, 33*(5), 673–700.

Bloyce, D., & White, C. (2018). When transport policy becomes health policy: A documentary analysis of active travel policy in England. *Transport Policy*, 72, 13–23. https://doi.org/10.1016/j.tranpol.2018.09.012

Buyana, K., Walubwa, J., Mukwaya, P., Lwasa, S., & Owuor, S. (2021). City residents, scientists and policy-makers: Power in co-producing knowledge. *Urban Transformations*, 3(1). https://doi.org/10.1186/s42854-021-00020-6

Canitez, F. (2019). Pathways to sustainable urban mobility in developing megacities: A socio-technical transition perspective. *Technological Forecasting and Social Change*, 141, 319–329. https://doi.org/10.1016/j.techfore.2019.01.008

Castán Broto, V. (2017). Energy landscapes and urban trajectories towards sustainability. *Energy Policy*, 108, 755–764. https://doi.org/10.1016/j.enpol.2017.01.009

Castañeda, P. (2021). Cycling case closed? A situated response to Samuel Nello-Deakin's "Environmental determinants of cycling: Not seeing the forest for the trees?" *Journal of Transport Geography*, 90. https://doi.org/10.1016/j.jtrangeo.2020.102947

Cavoli, C. (2021). Accelerating sustainable mobility and land-use transitions in rapidly growing cities: Identifying common patterns and enabling factors. *Journal of Transport Geography*, 94, 103093. https://doi.org/10.1016/j.jtrangeo.2021.103093

Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data for travel behavior (aka human mobility) analysis. *Transportation Research Part C: Emerging Technologies*, 68, 285–299. https://doi.org/10.1016/j.trc.2016.04.005

Coenen, L., Benneworth, P., & Truffer, B. (2012). Toward a spatial perspective on sustainability transitions. *Research Policy*, 41(6), 968–979. https://doi.org/10.1016/j.respol.2012.02.014

Cottrill, C. D., Brooke, S., Mulley, C., Nelson, J. D., & Wright, S. (2020). Can multi-modal integration provide enhanced public transport service provision to address the needs of vulnerable populations? *Research in Transportation Economics*, 83. https://doi.org/10.1016/j.retrec.2020.100954

Cresswell, T. (2004). Place: A Short Introduction [Book]. Wiley Blackwell.

Cresswell, T., & Merriman, P. (2011). Introduction: Geographies of Mobilities — Practices, Spaces, Subjects. In T. Cresswell & P. Merriman (Eds.), Geographies of Mobilities: Practices, Spaces, Subjects (pp. 1–18). Ashgate.

Currie, G. (2004). Gap analysis of public transport needs: Measuring spatial distribution of public transport needs and identifying gaps in the quality of public transport provision.

Transportation Research Record, 1895(1), 137–146. https://doi.org/10.3141/1895-18

Curtis, C. (2016). Place-making [Book]. In M. C. J. Bliemer, C. Mulley, & C. J. Moutou (Eds.), Handbook on Transport and Urban Planning in the Developed World (pp. 321–337). Edward Elgar.

Diaz Olvera, L., Plat, D., & Pochet, P. (2013). The puzzle of mobility and access to the city in Sub-Saharan Africa. *Journal of Transport Geography*, 32, 56–64. https://doi.org/10.1016/j.jtrangeo.2013.08.009

Dowling, R. (2018). Smart Mobility: Disrupting Transport Governance? In G. Marsden & L. Reardon (Eds.), Governance of the Smart Mobility Transition (pp. 51–64). Emerald.

- Faldi, G., Fisher, A., & Moretto, L. (2021). Five Points for Conceptualising Place-Based Approaches to African Urban Planning: An Introduction [Book]. In G. Faldi, A. Fisher, & L. Moretto (Eds.), African Cities Through Local Eyes: Experiments in Place-Based Planning and Design (pp. 1–27). Springer. https://doi.org/10.1007/978-3-030-84906-1
- Fenge, L. A., Fannin, A., & Hicks, C. (2012). Co-production in scholarly activity: Valuing the social capital of lay people and volunteers. *Journal of Social Work*, 12(5), 545–559. https://doi.org/10.1177/1468017310393796
- Fincher, R., Pardy, M., & Shaw, K. (2016). Place-making or place-masking? The everyday political economy of "making place." *Planning Theory & Practice*, 17(4), 516–536. https://doi.org/10.1080/14649357.2016.1217344
- Foley, L., Brugulat-Panés, A., Woodcock, J., Govia, I., Hambleton, I., Turner-Moss, E., Mogo, E. R. I., Awinja, A. C., Dambisya, P. M., Matina, S. S., Micklesfield, L., Abdool Karim, S., Ware, L. J., Tulloch-Reid, M., Assah, F., Pley, C., Bennett, N., Pujol-Busquets, G., Okop, K., ... Randall, L. (2022). Socioeconomic and gendered inequities in travel behaviour in Africa: Mixed-method systematic review and meta-ethnography. *Social Science and Medicine*, 292. https://doi.org/10.1016/j.socscimed.2021.114545
- Friedmann, J. (2010). Place and place-making in cities: A global perspective. *Planning Theory & Practice*, 11(2), 149–165. https://doi.org/10.1080/14649351003759573
- Galuszka, J. (2019). What makes urban governance co-productive? Contradictions in the current debate on co-production. *Planning Theory*, 18(1), 143–160. https://doi.org/10.1177/1473095218780535
- Gao, L., Wu, J., & Liu, R. (2010). Time contours: Using IC toll information to describe public transport networks accessibility. *Traffic and Transportation Studies*, 383, 1089–1097. https://doi.org/10.1061/41123(383)102
- Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study. *Research Policy*, 31, 1257–1274.
- Geels, F. W. (2010). Ontologies, socio-technical transitions (to sustainability), and the multi-level perspective. *Research Policy*, 39(4), 495–510. https://doi.org/10.1016/j.respol.2010.01.022
- Geels, F. W. (2012). A socio-technical analysis of low-carbon transitions: Introducing the multi-level perspective into transport studies. *Journal of Transport Geography*, 24, 471–482. https://doi.org/10.1016/j.jtrangeo.2012.01.021
- Geurs, K. T., & van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. *Journal of Transport Geography*, 12(2), 127–140. https://doi.org/10.1016/j.jtrangeo.2003.10.005
- Grin, J., Rotmans, J., & Schot, J. (Eds.). (2010). Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change [Book]. Routledge. https://doi.org/10.4324/9780203856598

- Guzman, L. A., Oviedo, D., & Rivera, C. (2017). Assessing equity in transport accessibility to work and study: The Bogotá region. *Journal of Transport Geography*, 58, 236–246. https://doi.org/10.1016/j.jtrangeo.2016.12.016
- Halden, D. (2002). Using accessibility measures to integrate land use and transport policy in Edinburgh and the Lothians. *Transport Policy*, 9(4), 313–324. https://doi.org/10.1016/S0967-070X(02)00017-3
- Handy, S. (2020). Is accessibility an idea whose time has finally come? *Transportation Research Part D: Transport and Environment*, 83, 102319. https://doi.org/10.1016/j.trd.2020.102319
- Handy, S. L., & Niemeier, D. A. (1997). Measuring accessibility: An exploration of issues and alternatives. *Environment and Planning A: Economy and Space*, 29, 1175–1194. https://doi.org/10.1068/a291175
- Handy, S., Weston, L., & Mokhtarian, P. L. (2005). Driving by choice or necessity? *Transportation Research Part A: Policy and Practice*, 39(2-3 SPEC. ISS.), 183–203. https://doi.org/10.1016/j.tra.2004.09.002
- Hodson, M., Burrai, E., & Barlow, C. (2016). Remaking the material fabric of the city: "Alternative" low carbon spaces of transformation or continuity? *Environmental Innovation and Societal Transitions*, 18, 128–146. https://doi.org/10.1016/j.eist.2015.06.001
- Horgan, D. (2020). Placemaking [Book]. In A. L. Kobayashi (Ed.), *Encyclopedia of Human Geography* (2nd ed., pp. 145–152). Elsevier.
- Jaramillo, C., Lizárraga, C., & Grindlay, A. L. (2012). Spatial disparity in transport social needs and public transport provision in Santiago de Cali (Colombia). *Journal of Transport Geography*, 24, 340–357. https://doi.org/10.1016/J.JTRANGEO.2012.04.014
- Jennings, G. (2021). "Cycling ... is not going to occur naturally": A view on the research agenda for bicycle mobility in urban South Africa. *Active Travel Studies: An Interdisciplinary Journal*, 1(1), 1–6. https://doi.org/10.16997/ats.1109
- Jirón, P. (2009). Mobility on the Move: Examining Urban Daily Mobility Practices in Santiago de Chile [PhD Thesis]. London School of Economics and Political Science.
- Jones, P., Anciaes, P., Buckingham, C., Cavoli, C., Cohen, T., Cristea, L., Gerike, R., Halpern, C., & Pickup, L. (2018). *Urban Mobility: Preparing for the Future, Learning from the Past CREATE Project Summary and Recommendations*. https://discovery.ucl.ac.uk/id/eprint/10058850/
- Kemp, R., Geels, F. W., & Dudley, G. (2012). Introduction: Sustainability Transitions in the Automobility and the Need for a New Perspective [Book]. In F. W. Geels, R. Kemp, G. Dudley, & G. Lyons (Eds.), Automobility in Transition?: A Socio-Technical Analysis of Sustainable Transport (pp. 3–28). Routledge.

Kilani, M., Diop, N., & De Wolf, D. (2022). A multimodal transport model to evaluate transport policies in the north of France. *Sustainability*, 14(3). https://doi.org/10.3390/su14031535

Kitchin, R. (2013). Big data and human geography: Opportunities, challenges and risks. *Dialogues in Human Geography*, 3(3), 262–267. https://doi.org/10.1177/2043820613513388

Kitchin, R., & Lauriault, T. P. (2015). Small data in the era of big data. *GeoJournal*, 80(4), 463–475. https://doi.org/10.1007/s10708-014-9601-7

Klopp, J. M. (2021). From "para-transit" to transit? Power, politics and popular transport. In R. H. M. Pereira & G. Boisjoly (Eds.), *Advances in Transport Policy and Planning*, 8, 191–209. https://doi.org/10.1016/bs.atpp.2021.07.002

Köhler, J., Geels, F. W., Kern, F., Markard, J., Onsongo, E., Wieczorek, A., Alkemade, F., Avelino, F., Bergek, A., Boons, F., Fünfschilling, L., Hess, D., Holtz, G., Hyysalo, S., Jenkins, K., Kivimaa, P., Martiskainen, M., McMeekin, A., Mühlemeier, M. S., ... Wells, P. (2019). An agenda for sustainability transitions research: State of the art and future directions. *Environmental Innovation and Societal Transitions*, 31, 1–32. https://doi.org/10.1016/J.EIST.2019.01.004

Kwan, M.-P. (1999). Gender, the home-work link, and space-time patterns of nonemployment activities. *Economic Geography*, 75(4), 370–394.

Leach, M., Scoones, I., & Stirling, A. (2010). Dynamic Sustainabilities: Technology, Environment, Social Justice [Book]. Earthscan.

Leiren, M. D., & Jacobsen, J. K. S. (2018). Silos as barriers to public sector climate adaptation and preparedness: insights from road closures in Norway. *Local Government Studies*, 44(4), 492–511. https://doi.org/10.1080/03003930.2018.1465933

Levy, C. (2013). Travel choice reframed: "Deep distribution" and gender in urban transport. *Environment and Urbanization*, 25(1), 47–63.

Levy, C., Allen, A., Castán Broto, V., & Westman, L. (2017). Unlocking urban trajectories: Planning for environmentally just transitions in Asia [Book]. In F. Caprotti & L. Yu (Eds.), Sustainable Cities in Asia (pp. 7–22). Routledge.

Litman, T., & Laube, F. (2002). Automobile Dependency and Economic Development. https://www.vtpi.org/ecodev.pdf

Loo, B. P. Y., & Siiba, A. (2019). Active transport in Africa and beyond: Towards a strategic framework. *Transport Reviews*, 39(2), 181–203. https://doi.org/10.1080/01441647.2018.1442889

Lovett, A., Haynes, R., Sünnenberg, G., & Gale, S. (2002). Car travel time and accessibility by bus to general practitioner services: A study using patient registers and GIS. *Social Science & Medicine*, 55(1), 97–111. https://doi.org/10.1016/S0277-9536(01)00212-X

Markard, J., Raven, R., & Truffer, B. (2012). Sustainability transitions: An emerging field of research and its prospects. *Research Policy*, 41(6), 955–967. https://doi.org/10.1016/j.respol.2012.02.013

Marsden, G., & Rye, T. (2010). The governance of transport and climate change. *Journal of Transport Geography*, 18(6), 669–678. https://doi.org/10.1016/j.jtrangeo.2009.09.014

Martens, K. (2012). Justice in transport as justice in accessibility: Applying Walzer's "Spheres of Justice" to the transport sector. *Transportation*, 39(6), 1035–1053. https://doi.org/10.1007/s11116-012-9388-7

Massingue, S. A., & Oviedo, D. (2021). Walkability and the right to the city: A snapshot critique of pedestrian space in Maputo, Mozambique. *Research in Transportation Economics*, 86, 101049. https://doi.org/10.1016/j.retrec.2021.101049

Mattioli, G., Roberts, C., Steinberger, J. K., & Brown, A. (2020). The political economy of car dependence: A systems of provision approach. *Energy Research and Social Science*, 66. https://doi.org/10.1016/j.erss.2020.101486

Merom, D., Humphries, J., Ding, D., Corpuz, G., Bellew, W., & Bauman, A. (2018). From 'car-dependency' to 'desirable walking'–15 years trend in policy relevant public health indicators derived from Household Travel Surveys. *Journal of Transport and Health*, 9, 56–63. https://doi.org/10.1016/j.jth.2018.01.008

Meuleman, L. (2021). Public administration and governance for the SGDs: Navigating between change and stability. *Sustainability*, 13(11). https://doi.org/10.3390/su13115914

Milne, D., & Watling, D. (2019). Big data and understanding change in the context of planning transport systems. *Journal of Transport Geography*, 76, 235–244. https://doi.org/10.1016/j.jtrangeo.2017.11.004

Mitullah, W. v, & Opiyo, R. (2012). Mainstreaming non-motorised transport (NMT) in policy and planning in Nairobi: Institutional issues and challenges. *31st Southern African Transport Conference*, 978–979.

Morgan, N. (2019). Cycling infrastructure and the development of a bicycle commuting socio-technical system: The case of Johannesburg. *Applied Mobilities*, 4(1), 106–123. https://doi.org/10.1080/23800127.2017.1416829

Morgan, N. (2020). The stickiness of cycling: Residential relocation and changes in utility cycling in Johannesburg. *Journal of Transport Geography*, 85. https://doi.org/10.1016/j.jtrangeo.2020.102734

Moser, S. C. (2016). Can science on transformation transform science? Lessons from codesign. *Current Opinion in Environmental Sustainability*, 20, 106–115. https://doi.org/10.1016/j.cosust.2016.10.007

- Newman, P. G., & Kenworthy, J. R. (1989). Cities and Automobile Dependence: An International Sourcebook. Avebury Technical.
- Niehaus, M., Galilea, P., & Hurtubia, R. (2016). Accessibility and equity: An approach for wider transport project assessment in Chile. Research in Transportation Economics, 59, 412–422. https://doi.org/10.1016/j.retrec.2016.05.003
- Nykvist, B., & Whitmarsh, L. (2008). A multi-level analysis of sustainable mobility transitions: Niche development in the UK and Sweden. *Technological Forecasting and Social Change*, 75(9), 1373–1387. https://doi.org/10.1016/j.techfore.2008.05.006
- Oeschger, G., Carroll, P., & Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. *Transportation Research Part D: Transport and Environment*, 89. https://doi.org/10.1016/j.trd.2020.102628
- Okyere, S. A., Oviedo, D., Frimpong, L. K., Nieto, M., & Kita, M. (2021, March 23). *People living in African urban settings do a lot of walking: But their cities aren't walkable.* The Conversation.
- Oseland, S. E. (2019). Breaking silos: can cities break down institutional barriers in climate planning? *Journal of Environmental Policy and Planning*, 21(4), 345–357. https://doi.org/10.1080/1523908X.2019.1623657
- Ostrom, E. (1990). Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press.
- Ostrom, E. (1996). Crossing the great divide: Coproduction, synergy, and development. World Development, 24(6), 1073–1087.
- Osuteye, E., Ortiz, C., Lipietz, B., Castán Broto, V., Johnson, C., & Kombe, W. (2019). Knowledge Co-Production for Urban Quality (No. 1).
- Oviedo, D., Cavoli, C., Jones, P., Levy, C., Koroma, B., Macarthy, J. M., Sabogal, O., & Arroyo, F. (2022). Accessibility and sustainable mobility transitions in Sub-Saharan Africa: Insights from Freetown. *Journal of Transport Geography*, 105, 103464. https://doi.org/10.1016/j.jtrangeo.2022.103464
- Oviedo, D., Okyere, S. A., Nieto, M., Kita, M., Kusi, L. F., Yusuf, Y., & Koroma, B. (2021). Walking off the beaten path: Everyday walking environment and practices in informal settlements in Freetown. *Research in Transportation Business & Management, 40*, 100630. https://doi.org/10.1016/J.RTBM.2021.100630
- Páez, A., Scott, D. M., & Morency, C. (2012). Measuring accessibility: Positive and normative implementations of various accessibility indicators. *Journal of Transport Geography*, 25, 141–153. https://doi.org/10.1016/j.jtrangeo.2012.03.016

Pangbourne, K., Stead, D., Mladenović, M., & Milakis, D. (2018). The Case of Mobility as a Service: A Critical Reflection on Challenges for Urban Transport and Mobility Governance. In G. Marsden & L. Reardon (Eds.), *Governance of the Smart Mobility Transition* (pp. 33–48). Emerald.

Perry, B., & Atherton, M. (2017). Beyond critique: The value of co-production in realising just cities? *Local Environment*, 22, 36–51. https://doi.org/10.1080/13549839.2017.1297389

Pohl, C., Rist, S., Zimmermann, A., Fry, P., Gurung, G. S., Schneider, F., Speranza, C. I., Kiteme, B., Boillat, S., Serrano, E., Hadorn, G. H., & Urs, W. (2010). Researchers' roles in knowledge co-production: Experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal. *Science and Public Policy*, *37*(4), 267–281. https://doi.org/10.3152/030234210X496628

Rabl, A., & de Nazelle, A. (2012). Benefits of shift from car to active transport. *Transport Policy*, 19(1), 121–131. https://doi.org/10.1016/j.tranpol.2011.09.008

Ruhrort, L. (2020). Reassessing the role of shared mobility services in a transport transition: Can they contribute the rise of an alternative socio-technical regime of mobility? Sustainability, 12(19). https://doi.org/10.3390/su12198253

Rydin, Y., Turcu, C., Guy, S., & Austin, P. (2013). Mapping the coevolution of urban energy systems: Pathways of change. *Environment and Planning A: Economy and Space*, 45(3), 634–649. https://doi.org/10.1068/a45199

Saeidizand, P., Fransen, K., & Boussauw, K. (2022). Revisiting car dependency: A worldwide analysis of car travel in global metropolitan areas. *Cities*, 120. https://doi.org/10.1016/j.cities.2021.103467

Sandercock, L. (1998). Making the Invisible Visible: A Multicultural Planning History [Book]. University of California Press.

Saunders, L. E., Green, J. M., Petticrew, M. P., Steinbach, R., & Roberts, H. (2013). What are the health benefits of active travel? A systematic review of trials and cohort studies. *PLoS ONE*, 8(8). https://doi.org/10.1371/journal.pone.0069912

Schönfelder, S., & Axhausen, K. W. (2003). Activity spaces: Measures of social exclusion? Transport Policy, 10(4), 273–286. https://doi.org/10.1016/j.tranpol.2003.07.002

Shove, E., Pantzar, M., & Watson, M. (2012). The Dynamics of Social Practice: Everyday Life and How It Changes [Book]. In *The Dynamics of Social Practice: Everyday Life and How it Changes*. Sage. https://doi.org/10.4135/9781446250655

Simon, D., Palmer, H., & Riise, J. (Eds.). (2020). Comparative Urban Research From Theory to Practice: Co-Production for Sustainability [Book]. Policy Press.

Teoh, R., Anciaes, P., & Jones, P. (2020). Urban mobility transitions through GDP growth: Policy choices facing cities in developing countries. *Journal of Transport Geography*, 88. https://doi.org/10.1016/j.jtrangeo.2020.102832

Tiznado-Aitken, I., Lucas, K., Muñoz, J. C., & Hurtubia, R. (2020). Understanding accessibility through public transport users' experiences: A mixed methods approach. *Journal of Transport Geography*, 88. https://doi.org/10.1016/j.jtrangeo.2020.102857

Truffer, B., & Coenen, L. (2012). Environmental innovation and sustainability transitions in regional studies. *Regional Studies*, 46(1), 1–21. https://doi.org/10.1080/00343404.2012.646164

Tsavachidis, M., & Petit, Y. Le. (2022). Re-shaping urban mobility – Key to Europe's green transition. *Journal of Urban Mobility*, 2, 100014. https://doi.org/10.1016/j.urbmob.2022.100014

Tun, T. H., Welle, B., Hidalgo, D., Albuquerque, C., Castellanos, S., Sclar, R., & Escalante, D. (2020). Informal and Semiformal Services in Latin America: An Overview of Public Transportation Reforms.

UNEP. (2016). Global Outlook on Walking and Cycling: Policies & Realities from Around the World.

UNEP. (2022, July 3). Why does sharing the road matter? UNEP. https://www.unep.org/explore-topics/transport/what-we-do/share-road/why-does-sharing-road-matter

Ureta, S. (2008). Mobilising poverty?: Mobile phone use and everyday spatial mobility among low-income families in Santiago, Chile. *Information Society*, 24(2), 83–92. https://doi.org/10.1080/01972240701883930

Urry, J. (2007). Mobilities [Book]. Polity Press.

van Wee, B., & Geurs, K. (2011). Discussing equity and social exclusion in accessibility evaluations. European Journal of Transport and Infrastructure Research, 11(4), 350–367. https://doi.org/10.18757/ejtir.2011.11.4.2940

Vanderschuren, M., & Zuidgeest, M. (2017). Non-motorized transport integration into urban transport planning in Africa [Book]. In W. v Mitullah, M. Vanderschuren, & M. Khayesi (Eds.), Non-Motorized Transport Integration into Urban Transport Planning in Africa (pp. 57–72). Routledge.

Vasconcellos, E. A. (2001). Urban Transport, Environment and Equity: The Case for Developing Countries. Earthscan.

Vecchio, G., Tiznado-Aitken, I., & Hurtubia, R. (2020). Transport and equity in Latin America: a critical review of socially oriented accessibility assessments*. *Transport Reviews*, 40(3), 354–381. https://doi.org/10.1080/01441647.2020.1711828

Venter, C., Mahendra, A., & Hidalgo, D. (2019). From Mobility to Access for All: Expanding Urban Transportation Choices in the Global South.

Venter, K. (2017, July). Driver perception of non-motorised transport users: A risk in traffic? 36th Southern African Transport Conference.

Watson, V. (2014). Co-production and collaboration in planning - The difference. Planning Theory and Practice, 15(1), 62–76. https://doi.org/10.1080/14649357.2013.866266

Whitmarsh, L. (2012). How useful is the Multi-Level Perspective for transport and sustainability research? *Journal of Transport Geography*, 24, 483–487. https://doi.org/10.1016/j.jtrangeo.2012.01.022

WHO. (2018). Global Status Report on Road Safety 2018.

Winters, M., Buehler, R., & Götschi, T. (2017). Policies to promote active travel: Evidence from reviews of the literature. *Current Environmental Health Reports*, 4(3), 278–285. https://doi.org/10.1007/s40572-017-0148-x

Zhang, J., Li, G., Nugroho, S. B., & Fujiwara, A. (2013). Paratransit-Adaptive Transportation Policies for Transition to Sustainability in Developing Countries. In A. Fujiwara & J. Zhang (Eds.), Sustainable Transport Studies in Asia (pp. 137–166). Springer.

Zijlstra, T., & Avelino, F. (2012). A Socio-Spatial Perspective on the Car Regime. In F. W. Geels, R. Kemp, G. Dudley, & G. Lyons (Eds.), Automobility in Transition? A Socio-Technical Analysis of Sustainable Transport (pp. 160–179). Routledge.

Contact

University College London Gower Street London WC1E 6BT +44 (0)20 7679 5584 Web www.t-sum.org

Email info@t-sum.org

Twitter @tsum_africa